656 research outputs found

    LIR1 expressing human Natural Killer cell subsets differentially recognize isolates of human cytomegalovirus through the viral MHC Class I homolog UL18

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Society for Microbiology via https://doi.org/10.1128/JVI.02614-15.Immune responses of Natural Killer (NK) cell are controlled by the balance between activating and inhibitory receptors, but the expression of these receptors varies between cells within an individual. Although NK cells are a component of the innate immune system, particular NK cell subsets expressing Ly49H are positively selected and increase in frequency in response to cytomegalovirus infection in mice. Recent evidence suggests that in humans certain NK subsets also have an increased frequency in the blood of HCMV infected individuals. However whether these subsets differ in their capacity of direct control of HCMV infected cells remains unclear. In this study we developed a novel in vitro assay to assess whether human NK cells subsets have differential abilities to inhibit HCMV growth and dissemination. NK cells expressing or lacking NKG2C did not display any differences when controlling viral dissemination. However, when in vitro expanded NK cells were used, cells expressing or lacking the inhibitory receptor Leukocyte Immunoglobulin-like receptor 1 (LIR1) were differentially able to control dissemination. Surprisingly, the ability of LIR1+ NK cells to control virus spread differed between HCMV viral strains, and this phenomenon was dependent on amino acid sequences within the viral ligand UL18. Together, the results here outlined an in vitro technique to compare the long-term immune responses of different human NK cell subsets, and suggest, for the first time, phenotypically defined human NK cell subsets may differentially recognise HCMV infected. IMPORTANCE HCMV infection is ubiquitous in most populations, it is not cleared by the host after primary infection but persists for life. The innate and adaptive immune system controls the spread of virus, of which Natural Killer (NK) cells play a pivotal role. NK cells can respond to HCMV infection by rapid, short-term non-specific innate responses, but evidence from murine studies suggested NK cells may display a long-term, memory like responses to murine cytomegalovirus infection. In this study, we developed a new assay that examines human NK cell subsets that have been suggested to play a long-term memory-like response to HCMV infection. We show that changes in a HCMV viral protein that interacts with an NK cell receptor can change the ability of NK cell subsets to control HCMV while the acquisition odf another receptor has no effect on virus control.This work was funded by the Wellcome Trust Grant WT094107AIA, the UK Medical Research Council Grant G0701279, MR/L008734/1 and MR/K021087/1 and supported by the NIHR Cambridge BRC Cell Phenotyping hub. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

    Development of Technologies for Separation and Functional Improvement of Individual Milk Protein Fractions

    Get PDF
    End of Project ReportMilk proteins can be hydrolysed (i.e. fragmented) using proteolytic enzymes to give enhanced functional and nutritional properties. There is an increasing demand for hydrolysed protein ingredients with specific properties for nutrition of individuals with specialised dietary requirements including infants, the critically ill, the immuno-compromised and athletes. Such hydrolysed proteins can be specifically designed to provide distinctive tailor-made solutions to meet customer needs in these areas. This project explored the technologies for the production of two types of hydrolysates i.e. acid-soluble and glutamine-rich. Acid-soluble protein hydrolysates have potential in the fortification of acidic beverages, including soft drinks. Glutamine-rich hydrolysates are suggested as an optimal glutamine source for administration during periods of stress, such as recovery from strenuous exercise, or from surgery. Casein was selected as the protein for development of acid-soluble product and cereal protein for the glutamine-rich product. The main conclusions were as follows: A number of protein hydrolysate products with value added properties and the processes required for their manufacture have been developed and are available for uptake by the food industry. Laboratory investigations identified conditions for the generation of two casein hydrolysates with desirable functional properties. Scale-up conditions for the manufacture of these hydrolysates in the pilot plant were successfully developed. Both hydrolystates were 100% soluble at pH 4.6, exhibited clarity in solution at low pH in clear soft drinks and in caramelised beverages and were stable in solution over a wide temperature range (from 4 to 30ÂşC) for extended periods. Solutions containing these hydrolysates exhibited no foaming properties and had acceptable sensory properties, being considered as weakly bitter compared to unsupplemented solutions. These performance characteristics make the acid-soluble hydrolysates useful supplements for caramelised beverages, such as colas, and clear soft drinks. Six glutamine-enriched peptide products were produced at laboratory scale using two commercially available enzyme preparations. These products had desirable characteristics such as increased levels of peptide bound glutamine, low free amino acid and free pyroglutamate levels. Pilot plant processes were developed for manufacture of the two glutamine-rich hydrolysates with most suitable compositional properties and these were fully characterised chemically. The manufacturing process was modified to enable industrial scale batches (5,000 litres) to be produced.Department of Agriculture, Food and the Marin

    Hydroxypropyl methylcellulose-based nasal sprays effectively inhibit in vitro SARS-CoV-2 infection and spread

    Get PDF
    The ongoing coronavirus disease (COVID-19) pandemic has required a variety of non-medical interventions to limit the transmission of the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One such option is over-the-counter nasal sprays that aim to block virus entry and transmission within the nasal cavity. In this study, we assessed the ability of three hydroxypropyl methylcellulose (HPMC)-based powder nasal sprays, produced by Nasaleze, to inhibit SARS-CoV-2 infection and release in vitro. Upon application, the HPMC powder forms a gel-like matrix within the nasal cavity—a process we recapitulated in cell culture. We found that virus release from cells previously infected with SARS-CoV-2 was inhibited by the gel matrix product in a dose-dependent manner, with virus levels reduced by >99.99% over a 72 h period at a dose of 6.4 mg/3.5 cm2. We also show that the pre-treatment of cells with product inhibited SARS-CoV-2 infection, independent of the virus variant. The primary mechanism of action appears to be via the formation of a physical, passive barrier. However, the addition of wild garlic provided additional direct antiviral properties in some formulations. We conclude that HPMC-based nasal sprays may offer an additional component to strategies to limit the spread of respiratory viruses, including SARS-CoV-

    Human cytomegalovirus: taking the strain

    Get PDF
    In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the UL/b′ region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV

    HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells

    Get PDF
    Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b’ domain is associated with loss of virulence. In a screen of UL/b’, we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix

    HCMV-encoded NK modulators: Lessons from in vitro and in vivo genetic variation

    Get PDF
    Human cytomegalovirus (HCMV) is under constant selective pressure from the immune system in vivo. Study of HCMV genes that have been lost in the absence of, or genetically altered by, such selection can focus research toward findings of in vivo significance. We have been particularly interested in the most pronounced change in the highly passaged laboratory strains AD169 and Towne—the deletion of 13–15 kb of sequence (designated the UL/b′ region) that encodes up to 22 canonical genes, UL133-UL150. At least 5 genes have been identified in UL/b′ that inhibit NK cell function. UL135 suppresses formation of the immunological synapse (IS) by remodeling the actin cytoskeleton, thereby illustrating target cell cooperation in IS formation. UL141 inhibits expression of two activating ligands (CD155, CD112) for the activating receptor CD226 (DNAM-1), and two receptors (TRAIL-R1, R2) for the apoptosis-inducing TRAIL. UL142, ectopically expressed in isolation, and UL148A, target specific MICA allotypes that are ligands for NKG2D. UL148 impairs expression of CD58 (LFA-3), the co-stimulatory cell adhesion molecule for CD2 found on T and NK cells. Outside UL/b′, studies on natural variants have shown UL18 mutants change affinity for their inhibitory ligand LIR-1, while mutations in UL40's HLA-E binding peptide differentially drive NKG2C+ NK expansions. Research into HCMV genomic stability and its effect on NK function has provided important insights into virus:host interactions, but future studies will require consideration of genetic variability and the effect of genes expressed in the context of infection to fully understand their in vivo impact

    New development: 4P recommendations for implementing change, from research in hospitals

    Get PDF
    How are hospital staff involved in process improvement initiatives such as Lean? What can we learn from Lean implementation experiences about the sustainability of such initiatives? The authors considered such questions in a study of workplace change in Australia and Canada. They found that Lean is more likely to be sustained when leaders adopted the 4P recommendations presented in this article

    Human cytomegalovirus protein pUL36: A dual cell death pathway inhibitor.

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate, and adaptive viral immune evasion. Here, we employed multiplexed tandem mass tag-based proteomics to characterize host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of procaspase-8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death
    • …
    corecore